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The equilibrium density profiles in a classical multicomponent plasma near a
hard wall made with a dielectric material characterized by a relative dielectric
constant Ew are studied from the first Born–Green–Yvon (BGY) equation
combined with Poisson equation in a regime where Coulomb coupling is weak
inside the fluid. In order to prevent the collapse between charges with opposite
signs or between each charge and its dielectric image inside the wall when
Ew > 1, hard-core repulsions are added to the Coulomb pair interaction. The
charge-image interaction cannot be treated perturbatively and the density pro-
files vary very fast in the vicinity of the wall when Ew ] 1. The formal solution of
the associated inhomogeneous Debye–Hückel equations will be given in Paper II,
together with a systematic fugacity expansion which allows to retrieve the results
obtained from the truncated BGY hierarchy. In the present paper the exact
density profiles are calculated analytically up to first order in the coupling
parameter. The expressions show the interplay between three effects: the geo-
metric repulsion from the impenetrable wall; the electrostatic effective attraction
(Ew > 1) or repulsion (Ew < 1) due to its dielectric response; and the Coulomb
interaction between each charge and the potential drop created by the electric
layer which appears as soon as the system is not symmetric. We exhibit how the
charge density profile evolves between a structure with two oppositely-charged
layers and a three-layer organization when Ew varies. (The case of two ideally
conducting walls will be displayed elsewhere).

KEY WORDS: Coulomb interactions; dielectric wall; BGY equation; inhomo-
geneous Debye–Hückel equation; electric layer.



1. INTRODUCTION

The present paper provides new exact analytical perturbative results for the
density profiles of a classical Coulomb plasma in the vicinity of a polariz-
able boundary. We consider a multicomponent plasma, namely a system
made of at least two species of moving charges with opposite signs. The
linear electrostatic response of the wall is described at a macroscopic level
by a relative dielectric constant Ew. (Ew is the ratio of the dielectric constants
in the wall and in the half-space occupied by the Coulomb fluid). The
density profiles are obtained in a high-temperature (or low-density) limit
which is realized for instance in an electrolyte solution.

As shown in Paper II—published just after the present paper—this
limit is the first-order result in a systematic expansion in powers of the
Coulomb coupling parameter. This limit can be retrieved from a mean-field
approximation for the first Born–Green–Yvon (BGY) equation which
leads to the resolution of inhomogeneous Debye–Hückel equations. For
the sake of pedagogy, the present paper is devoted to the mean-field
interpretation, which should be more familiar to readers interested in
chemical physics, and to the discussion of the properties of the electric
layer. The exact derivation is postponed to Paper II where we present two
points: first, systematic resummations of Coulomb divergencies in the
framework of the grand-canonical ensemble; second, the resolution of the
inhomogeneous Debye–Hückel equations obeyed by the auxiliary effective
potentials which arise from the latter resummations.

The Coulomb pair interaction v(r; rŒ) between two unit charges located
respectively at r and rŒ near the dielectric wall, namely the solution of
Poisson equation

DrŒv(r; rŒ)=−4pd(r− rŒ) (1.1)

with the adequate electrostatic boundary conditions, reads

vw(r; rŒ)=
1

|r− rŒ|
−Del

1
|r− rŒg|

(1.2)

where Del — (Ew −1)/(Ew+1) and rŒg is the image of rŒ with respect to the
plane interface. (7) When Ew varies from 0 to +., Del ranges from −1 to 1.
In a dielectric material −1 < Del < 1. If the Coulomb fluid mimics an elec-
trolyte in a solvent described as a rigid continuum medium, Ew is the rela-
tive dielectric constant of the wall with respect to the solvent dielectric
constant Es and the interaction potential vw in (1.2) is to be multiplied by
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1/Es. The potential (1.2) may be seen as the sum of two contributions. The
vacuum or ‘‘bulk’’ potential

vB(r; rŒ)=
1

|r− rŒ|
(1.3)

is the solution of (1.1) far away from any boundary or in the vicinity of a
wall with no electrostatic response (Ew=1). The second term in (1.2) is the
interaction with an ‘‘image’’ charge; the latter describes the interaction with
the polarization charge generated in the material by plasma charges. The
corresponding self-energy of a charge ea at point r—namely the work
needed to take one charge ea from the bulk to point r in the vicinity of the
wall—is equal to e2

aVself(r) with

Vself(r)=
1
2[vw −vB](r, r) (1.4)

In (1.4) the factor 1/2 in the interaction between a charge and its image
comes from the proportionality between the two charges. In the following,
the interface is perpendicular to the x-axis and located at x=0, and,
according to (1.2),

Vself(x)=−Del
1
4x

(1.5)

When Del > 0 a hard-core repulsion from the wall must be introduced in
order to prevent the collapse of each charge with its image. For the sake of
simplicity, the range b of the repulsion from the wall is chosen to be the
same for all species in the present paper. Even in the bulk, a short-distance
cut-off must be introduced in order to prevent the collapse of the system
due to the attraction between charges with opposite signs. However this
second cut-off proves not to arise in the densities at leading order in the
Coulomb coupling parameter inside the fluid. (Indeed, in the first BGY
hierarchy the variation of the density of every species depends on correla-
tions only through an integral and the value of the latter integral at leading
order in the Coulomb coupling parameter is determined only by the
behavior of correlations at distances far larger than the short-distance
cut-off.)

For a long time, the short-distance singularity of the charge-image
interaction has prevented one from getting exact results in the case Ew ] 1
at any distance from the wall for either a generic multicomponent or a One-
Component Plasma (OCP), namely a system made of only one moving
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charge species in a rigid neutralizing background. The self-consistent
method introduced by Guernsey (6) for a plain wall (Ew=1) was generalized
for the first time to a case where Ew ] 1 by Alastuey. (1) This author dealt
with the OCP near a wall with a repulsive electrostatic response (Ew < 1) in
the weak-coupling limit. In this case the density vanishes on the wall and
drastically varies over the closest approach distance be2. The mean-field
electrostatic potential F(x) created by the charge density profile is solution
of an inhomogeneous Debye–Hückel equation where the inverse Debye
length depends on the distance from the wall and rapidly varies in its vicin-
ity. Alastuey solved the equation for the mean-field value of F(x) and
produced the corresponding profile density but only for distances larger
than the closest approach distance. (For these distances a linearization may
be performed and the equation for F(x) becomes a second-order linear
differential equation with constant parameters). The case Ew > 1, where the
attractive response of the wall makes the density diverge exponentially fast
on the wall in the absence of any hard-core repulsion, was left unsolved at
any distance.

In Section 2 we introduce a self-consistent scheme for the determina-
tion of density profiles in a multicomponent plasma from the first BGY
equation combined with Poisson equation. By using the results of Paper II
about the solutions of the corresponding inhomogeneous Debye–Hückel
equations, we give their formal expressions at any distance from the wall at
first order in the coupling parameter eD inside the fluid,

eD — 1
2be

2oD (1.6)

In (1.6) b is the inverse temperature, b=1/kBT where kB is Boltzmann
constant, e is the typical charge in the plasma and oD is the inverse Debye
length

oD — `4pb C
a

e2
a r

B
a (1.7)

where rB
a is the bulk value of the density for species with index a (and ea is

the charge of species a). The sum over a runs from 1 to the number of
species ns. Every density profile takes the form

ra(x)=r
B
a h(x−b) e−be2aV

sc
self (x)[1−beaF(x)] (1.8)

where V sc
self (x) is a screened self-energy and F(x) is the electrostatic poten-

tial created by the charge density profile ;c ecrc(x). (F(x) is set to 0 in the
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bulk.) The Heaviside function h(u)—with h(u)=1 if u > 0 and h(u)=0
if u < 0—describes the geometric constraint enforced by the impenetrable
wall. The analytic expressions are obtained in Section 3. F(x), given in
(3.17), decays as exp(−oDx) at large distances. V sc

self (x) may be written as
the sum

V sc
self (x)=

oD

2
L̄(oDx; oDb, Del)−

Del

4x
exp(−2oDx) (1.9)

V sc
self (x) falls off as exp(−2oDx)/4x when x goes to infinity for all values

of Del. (oD/2) L̄ given in (3.9) and (3.11) arises mainly from the geometric
deformation of the screening cloud around a charge in the vicinity of the
wall and remains finite at any distance. On the contrary, −e2

a(Del/4x)×
exp(−2oDx) is the part of the screened self-energy originating from the
bare self-energy e2

aVself (1.5) due to the dielectric response of the wall. The
second term in V sc

self (x) was derived for the first time in the case Ew < 1 from
a phenomenological mean-field argument by Onsager and Samaras in
1934. (11) Its contribution to the density profile is crucial at short distances.
When Ew < 1 (Del < 0) all charges are electrostatically repelled by the wall,
the short-distance repulsion range b can be set to zero and the profile
density vanishes exponentially fast at the contact (x=0) with the wall.
On the contrary, when Ew > 1 (Del > 0), all charges are attracted by the
wall, b must be kept finite and the contact value ra(b) increases as
exp[Delbe

2
a exp(−2oDb)/(4b)] when b becomes small. In Section 3 we also

derive the profile density in a OCP and we compare our result with that of
ref. 1.

Section 4 is devoted to generic global properties of the plasma at the
interface. In Section 5 we study the case of a plain hard wall (Ew=1). The
analytic expressions are rather simple and we can investigate the only two
effects which interplay: the geometric repulsion from the wall and the
interaction with the electrostatic potential drop F(x) created by the electric
layer itself. In the case of a symmetric two-component plasma, we retrieve
the results of ref. 8. In Section 6 the generic properties of the density pro-
files when Ew ] 1 are interpreted in terms of the competition between three
effects: the two ones already at stake in the vicinity of a plain hard wall
plus the electrostatic (repulsive or attractive) interaction due to the dielec-
tric response of the wall. In particular, we exhibit how the structure of the
charge density profile evolves from a double layer into a threefold layer
and then into an inversed double layer when Ew increases from the value
Ew=1.
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2. SELF-CONSISTENT SCHEME IN THE WEAK-COUPLING REGIME

2.1. Exact First BGY Equation

The exact density profile ra(x) is related to the Ursell function hac
between species a and c through the first equation of the BGY hierarchy
equation,

d
dx

(ln ra(x))=−b
d
dx

(eaF(x)+e2
aVself(x))

−bea F drŒ 1C
c

ecrc(xŒ) hac(r; rŒ)2
“vw

“x
(rŒ; r) (2.1)

In (2.1) Vself(x) is the self-energy (1.4) due to the dielectric response of the
wall, while F(x) is the electrostatic potential created by the charge density
profile ;c ecrc(x). F(x) obeys Poisson equation

DF(x)=−4p C
c

ecrc(x) (2.2)

F is uniform in the bulk, since a fundamental property of Coulomb
systems is the local neutrality relation obeyed by the bulk densities

C
a

ear
B
a=0 (2.3)

for any value of the Coulomb coupling parameter. Thus, if we redefine
F(x) as the difference between the electrostatic potential created by the
charge density and its bulk value, F(x) tends to zero when x goes to +..

We recall that, in the case Ew=1, where there is no image forces, the
density is merely uniform in the zero-coupling limit. In a plasma with no
charge symmetry the potential drop F(x), which is determined from the
charge density profile ;c ecrc(x) through Poisson equation (2.2), does not
vanish. Moreover, in the weak coupling regime, it is of the same order as
the pair-correlation contribution to dra/dx in the BGY equation, as shown
a posteriori by our explicit calculations displayed in Section 3. By a mean-
field scheme Guernsey (6) closed the second BGY equation in a weak-coupl-
ing limit and found that the zeroth-order pair correlation is calculated with
uniform densities in a semi-infinite space. Thus he obtained coupled equa-
tions for dra/dx and F(x) and calculated ;a eara(x) as a double integral.
(The resolution was not performed for every ra(x) in the case F(x) ] 0
though it might have been done.) The density profiles ra(x) were studied
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only in the case of a symmetric two-component plasma. The first-order
correction to their bulk value in the weak-coupling regime was calculated
by Jancovici (8) as follows. Because of the charge symmetry specific to this
system, the charge density profile and subsequently the electrostatic poten-
tial difference with the bulk F(x) vanish at any distance from the wall.
Then the gradient of the density ra(x) of species with charge ea given by
the first BGY equation (2.1) is determined at leading order only by the
zeroth-order pair correlation; the latter is calculated in a mean-field
approximation for the direct correlation function with the same result as
that found by Guernsey. (6)

When Ew ] 1 the methods introduced in the case Ew=1 cannot be
generalized straighforwardly, because the fast variation of the density in
the vicinity of the wall prevents one from using mere linearizations. In
order to circumvert this difficulty we introduce the following scheme.

2.2. Mean-Field Ursell Function

In the first BGY equation (2.1) ;c ecrc(xŒ) hac(r; rŒ) is the excess
charge density of the screening cloud around a charge ea located at r, the
excess charge being calculated with respect to the charge density profile
;c ecrc(x). The electrostatic potential created at r" by the charge ea and its
screening cloud is

Fexc, a(r; rœ)=eavw(r; rœ)+F drŒ 1C
c

ecrc(xŒ) hac(r; rŒ)2 vw(rŒ; rœ) (2.4)

A mean-field approximation amounts to assuming that

FMF
exc, a(r; rœ)=eafMF(r; rœ) (2.5a)

hMF
ac (r; rŒ)=−beaecfMF(r; rŒ) (2.5b)

(At leading order in the parameter eD, the long-range Coulomb interaction
prevails and the short-distance repulsion between particles is not involved
in (2.5)). By inserting these approximations into the definition (2.4), we
obtain the well-known mean-field equation

fMF(r; rœ)=vw(r; rœ)−b F drŒ 1C
c

e2
c rc(xŒ)2 vw(r; rŒ) fMF(rŒ; rœ) (2.6)
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Then the mean-field approximation of the integral in (2.1) proves to be
equal to

−
be2
a

2
“

“x
[fMF−vw](r; r) (2.7)

Indeed, the integral in (2.1) can be rewritten by means of the trick involv-
ing the Dirac distribution d(r− rœ),

F drŒ g(r; rŒ)
“f
“x

(rŒ; r)=F drœ d(r− rœ)
“

“x
1F drŒ g(rœ; rŒ) f(rŒ; r)2 (2.8)

Moreover, according to (1.1) and (2.6), fMF(r; rŒ) is the Green function of
the operator DrŒ−4pb;c e

2
c rc(xŒ). Since the latter operator is self-adjoint,

the real function fMF(r; rŒ), as well as vw(r; rŒ), is symmetric under exchange of
r and rŒ when r and rŒ are in the same region. Then (2.6) can be used. Since
a symmetric function h(r; rŒ)=h(rŒ; r) obeys the identity “[h(r; rŒ)]/“x|r=rŒ

=(1/2) “[h(r; r)]/“x, we get the result (2.7).
Finally, according to the definition (1.4) of Vself(x) and since ra(x)

tends to rB
a when x goes to +., the mean-field density profile rMF

a (x)
proves to read

rMF
a (x)=h(x−b) rB

a exp[−be2
aV

sc
self (x)−beaF

MF(x)] (2.9)

with

V sc
self (x) —

1
2(f

MF−vB)(r, r)− lim
xQ+.

1
2(f

MF−vB)(r, r) (2.10)

Meanwhile the coupled equation for the electrostatic potential FMF(x) is
(2.2) where rc(x) is replaced by rMF

c (x). In (2.9) the argument in the expo-
nential may be interpreted as b times the work given by an operator to the
system in order to put a charge ea into the Coulomb fluid at r, make it
cross the potential drop FMF(x) from x to +. and then get it back from
the bulk. In the following, we set

zMF
a (x) — h(x−b) rB

a exp[−be2
aV

sc
self (x)] (2.11)

2.3. Linearization of the F(x) Contribution

Explicit calculations can be performed if the contribution fromFMF(x) to

rMF
a (x)=zMF

a (x) e−bea F
MF(x) (2.12)
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is linearized,

rMF, lin
a (x)=zMF

a (x)[1−beaFMF, lin(x)] (2.13)

Such a linearization is allowed only if FMF(x) does not become infinite in
the vicinity of the wall. This is indeed the case, because FMF(x) is created
by the charge density and the latter has no singularity thanks to the hard-
core repulsion from the wall. The absence of divergency in F(x) near the
wall is also checked in the systematic approach of Paper II. In the follow-
ing we will show that the screened self-energy V sc

self (x) diverges when x goes
to zero and no linearization can be performed for it.

By inserting the linearized mean-field expression for the densities into
Poisson equation (2.2) we find that

5Dr −4pb C
c

e2
cz

MF
c (x)6 FMF, lin(x)=−4p C

c

ecz
MF
c (x) (2.14)

(2.14) can be viewed as some kind of partially linearized Poisson–Boltzmann
equation in an inhomogeneous case. As a consequence of (2.14),

FMF, lin(x)=F drŒ fMF, lin
z (rŒ, r) C

c

ecz
MF
c (xŒ) (2.15)

where fMF, lin
z (r, rŒ) is a Green function solution of

[Dr −o
2
D(1+U(r))] fMF, lin

z (r, rŒ)=−4pd(r− rŒ) (2.16)

with

U(r)=
4pb
o2

D

C
c

e2
c[z

MF
c (x)−rB

c ] (2.17)

fMF, lin
z is the solution of (2.16) which satisfies the same boundary condi-

tions as vw(r, rŒ).

2.4. Solution of the Inhomogeneous Debye–Hückel Equation

at Leading Order

A formal solution of the inhomogeneous Debye–Hückel equation
(2.16) is given in Paper II. An eD-expansion is devised and we show that

fMF, lin
z (r, rŒ)=oDf2 (0)(oD r, oD rŒ)[1+Oexp(eD)] (2.18)
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In (2.18) Oexp(eD) denotes a function of order eD—possibly multiplied by
some power of ln eD—which decays exponentially fast at large distances
over a scale o−1

D and which remains bounded by a function of be2/b for all
x larger than the closest approach distance b to the wall. oDf2 (0) is the solu-
tion of the homogeneous Debye–Hückel equation

[Dr −o
2
D] oDf2

(0)(oD r, oD rŒ)=−4pd(r− rŒ) (2.19)

with the same electrostatic boundary conditions as vw(r, rŒ): f2 (0) is contin-
uous in all space and

lim
xQ 0−

Ew
“f2 (0)

“x
(oD r, oD rŒ)= lim

xQ 0+

“f2 (0)

“x
(oD r, oD rŒ) (2.20)

Equation (2.18) also holds for fMF defined in (2.6) and which obeys equa-
tion (2.16) where zMF

c (x) in U(r) is replaced by rc(x). Thus the screened self-
energy defined in (2.10) is also determined at leading order in eD.

Eventually, the density profile at leading order in eD is given by (2.11)
and (2.13) with

V sc
self (x)=

1
2oD[f2

(0)−f2B](oD r, oD r) (2.21)

and

FMF, lin(x)=F drŒ oDf2 (0)(oD r, oD rŒ) C
c

ecz
MF
c (xŒ) (2.22)

In (2.21) f2B denotes the solution of the homogeneous Debye–Hückel equa-
tion in the bulk, namely the solution which vanishes when |r− rŒ| becomes
infinite, as well as vB(r, rŒ) defined in (1.3).

3. EXPLICIT DENSITY PROFILES

3.1. Solution of the Homogeneous Debye Equation

Equation (2.19) can be solved because it is changed into a second-
order differential equation by taking the Fourier transform in the direction
parallel to the wall,

f2 (0)(x̃, x̃ Œ, q)=F d ỹ e iq. ỹf2 (0)(x̃, x̃ Œ, ỹ) (3.1)
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In (3.1) we have used the dimensionless variables x̃=oDx and ỹ=oDy,
where y is the projection of r onto a plane parallel to the wall. As recalled
in Paper II, since oDf2 (0) obeys the same boundary conditions as vw, for
x > b and xŒ > b

f2 (0)(x̃, x̃ Œ, q; b̃, Del)=f2B(|x̃− x̃ Œ|, q)+Z(q; b̃, Del) h̃+
HW(x̃+x̃ Œ−2b̃; q) (3.2)

with

f2B(|x̃− x̃ Œ|, q)=
2p

`1+q2
e−|x̃− x̃ Œ|`1+q2 (3.3)

h̃+
HW(x̃+x̃ Œ−2b̃; q)=

2p

`1+q2

`1+q2−|q|

`1+q2+|q|
e−(x̃+x̃ Œ−2b̃)`1+q2 (3.4)

and

Z(q; b̃, Del) —
1−Dele−2qb̃[`1+q2+|q|]2

1−Dele−2qb̃[`1+q2−|q|]2
(3.5)

3.2. Screened Self-Energy

The screened self-energy (2.21) can be written as

be2
aV

sc
self (x)=eaL(x̃− b̃; b̃, Del) (3.6)

with ea — (1/2) be2
aoD and

L(x̃− b̃; b̃, Del) — F
d2q
(2p)2

[f2 (0)(x̃, x̃, q; b̃, Del)−f2B(x̃, x̃, q)] (3.7)

According to (3.2)

L(u; b̃, Del)=F
d2q
(2p)2

Z(q; b̃, Del)× h̃+
HW(2u; q) (3.8)

where h̃+
HW is given in (3.4). By using the change of variable t=`1+q2 we

get

L(x̃− b̃; b̃, Del)=F
+.

1
dt

1−Del[t+`t2−1]2 e−2b̃`t 2−1

[t+`t2−1]2−Dele−2b̃`t 2−1
e−2(x̃− b̃) t (3.9)
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The successive changes of variables t=tŒ+1 then tŒ=v/[2(x̃− b̃)]
allow to show that

L(x̃− b̃; b̃, Del) ’
x̃Q+.

e−2(x̃− b̃)

2(x̃− b̃)
(3.10)

If b̃ ] 0 the integrand in (3.9) behaves as 1/t2 times exp[−2(x̃− b̃) t] when
t goes to +. and L(x̃− b̃, b̃, Del) is finite for all values of x̃ even when x̃
approaches b̃. If b̃=0 the integrand vanishes as exp(−2x̃t)/t2 for large t
when Del=0 but it behaves as −Del exp(−2x̃t) if Del ] 0. Subsequently for
b̃=0, the integral diverges at x̃=b̃=0 when Del ] 0. By subtracting the
dangerous asymptotic behaviour Ias(t)=−Del exp[−2x̃t] from the
integrand of L and by performing >+.1 dt Ias(t) we get

L(x̃− b̃; b̃, Del)=−Del
e−2x̃

2x̃
+L̄(x̃; b̃, Del) (3.11)

where L̄(x̃; b̃, Del) remains finite even when x̃=b̃=0.

3.3. Electrostatic Potential Drop

In order to calculate the electrostatic potential drop (2.22), we notice
that

f2 (0)(x̃, x̃ Œ, q=0; b̃)=2p[e−|x̃− x̃ Œ|+e−(x̃+x̃ Œ−2b̃)] (3.12)

and we rewrite zMF
a (x) as

zMF
a (x)=rB

a [1+w0(x̃; ea , Del)][1− eaL̄(x̃; b̃, Del)] (3.13)

with

w0(x̃; ea , Del) — exp 5Del
be2
a

4x
e−2oDx6−1 (3.14)

According to the bulk neutrality relation (2.3), the constant term in zMF
a (x)

gives a vanishing contribution to (2.22). w0(x̃; ea , Del) proves to contribute
from order eD ln eD to the integral in (2.22). Indeed, let us consider a func-
tion f(x̃ Œ; x̃, b̃) which is bounded for all x̃ Œ \ 0 and b̃ \ 0. If b > o−1

D , then
for all x > b be2

a/x < oDbe
2
a and

oD F
+.

b
dxŒ w0(x̃ Œ; ea , Del) f(x̃ Œ; x̃, b̃) ’

ea Q 0
oD F

+.

b̃
dx̃ Œ
Delbe

2
a

4x̃ Œ
e−2x̃ Œf(x̃ Œ; x̃, b̃)

(3.15)
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In the case b ° o−1
D , let us introduce the length l such that be2

a ° l ° o−1
D .

For all x in the range b < x < l, oDx ° 1, while, for all x > l, be2
a/x ° 1.

Then at leading order in eD

oD F
+.

b
dxŒ w0(x̃ Œ; ea , Del) f(x̃ Œ; x̃, b̃)

’
ea Q 0

lim
l/be2a Q+.

lim
oD lQ 0

3oD F
l

b
dxŒ 5exp 1Delbe

2
a

4xŒ
2−16 f(x̃ Œ=0; x̃, b̃=0)

+oD F
+.

l̃
dx̃ Œ
Delbe

2
a

4x̃ Œ
e−2x̃ Œf(x̃ Œ; x̃, b̃=0)4×[1+O(b̃)] (3.16)

where O(b̃) denotes a term of order b̃. After the change of variable
xŒ=x −1be

2
a, the first integral in (3.16) proves to be of order ea, as well as the

second integral. Both integrals have a logarithmic dependence upon l and
the respective ln(l/be2

a) and ln(oDl) terms combine so that the sum of the
two integrals starts at order eD ln eD.

Eventually, we get for FMF, lin(x), denoted by F(x) in the following,

F(x)=−
2pb
oD

C
c

rce
3
cMc(oDx; ec , oDb, Del)×[1+Oexp(eD)] (3.17)

where Oexp(eD) is defined after (2.18). In (3.17) Mc=M̄+[Mc−M̄] with

M̄(x̃; b̃, Del)=
1
2 F

+.

b̃
duŒ[e−|x̃−uŒ|+e−(x̃+uŒ−2b̃)] L̄(uŒ; b̃, Del) (3.18)

and Mc−M̄ is the eD-expansion at orders ln ec and (ec)0 of the integral

−
1
2

1
ec
F
+.

b̃
duŒ[e−|x̃−uŒ|+e−(x̃+uŒ−2b̃)] w0(uŒ; ec , Del) (3.19)

3.4. Density Profile

The previous expressions are inserted in (2.13) with the result

ra(x)=r
B
a h(x−b) exp 1Del

be2
a

4x
e−2oDx2×31−

1
2
boD 5e2

aL̄(oDx; oDb, Del)

−ea
4pb
o2

D

C
c

rB
c e

3
cMc(oDx; ec , oDb, Del)64 (3.20)
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where ec=(1/2) be2
coD .Mc is defined in (3.18) and (3.19), while L̄ is given by

(3.9) and (3.11). L̄(x̃; b̃, Del) decreases exponentially fast as exp(−2x̃)/2x̃
when x̃ goes to ., while Mc decays only as exp(−x̃)/x̃.

We give more explicit formulae in the regime

g — oDb ° 1 (3.21)

whatever the value of be2/b may be. When eD ° 1, according to (1.6) and
(1.7), the mean interparticle distance a is smaller than o−1

D , a < o−1
D and the

condition (3.21) will be fulfilled if b ° a—for instance if b is of the same
magnitude as the hard-core diameter of charges which itself is far smaller
than a. L̄(x̃; oDb, Del) is bounded for every x, even when g=oDb vanishes,
and it can be expanded in powers of g. According to (3.9) and (3.11),
L̄(x̃; g=0, Del) is directly given by

L̄(x̃; g=0, Del)=F
+.

1
dt e−2tx̃ (1−D2

el)

(t+`t2−1)2−Del

(3.22)

On the other hand

Mc(x̃; ec , g=0, Del)

=M̄(x̃; g=0, Del)+(ln ec) Del
1
2 e

−x̃−DelIc(x̃; Del , be
2
c/b) (3.23)

where

M̄(x̃; g=0, Del)=F
+.

1
dt 5e

−2tx̃−2te−x̃

1−(2t)2
6 1−D2

el

(t+`t2−1)2−Del

(3.24)

while, according to (3.16),

Ic(x̃; Del , be
2
c/b)=−

1
4
e−x̃ 32 5A 1be

2
cDel

4b
2+ln 1 |Del |

2
2+2C−16+ln 34

+
1
4
e−2x̃[e x̃Ei(−x̃)−e3x̃Ei(−3x̃)] (3.25)

In (3.25) C is the Euler constant, Ei(−u) denotes the Exponential-Integral
function defined for u > 0 as Ei(−u) — − >+.u dt exp(−t)/t and

A(u) —
1
u
[eu−1]−Ei(u) (3.26)

A(u) arises from the integration of exp(−be2
cDel/4uŒ)−1 in (3.19).
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3.5. Interpretation: Competition Between Three Effects

The profile density is ruled by the competition between three kinds of
effective interactions, as exhibited by rewriting the density profile by means
of (2.9), (3.6) and (3.11) with the result

ra(x)=r
B
a e
Delbe

2
a(e

−2oDx/4x)

×31−be2
a

oD

2
L̄(oDx; oDb, Del)−beaF(x)+Oexp(e

2
D)4 (3.27)

where Oexp(e
2
D) is defined after (2.18). The interpretation of (3.27) is the

following.
First, eaF(x) is the interaction between a charge ea and the charge

profile density in the electric layer. The other two interactions, which are
proportional to e2

a, are the two parts of the screened self-energy.
Second, exp(Delbe

2
a exp(−2oDx)/4x) is the effective Boltzmann factor

associated with the part of the screened self-energy created by the electro-
static response of the wall. The effect of the corresponding attractive
(Del > 0) or repulsive (Del < 0) interaction with the wall cannot be linear-
ized. Indeed, when the dielectric wall is repulsive, the density vanishes as
exp(−|Del | be

2
a/4b) when b goes to zero. Since the hard-core repulsion is

spurious when Del < 0, we can set b=0 and

ra(x=0, Del < 0)=0 (3.28)

On the contrary when Del > 0, the density blows up as

ra(x=b, Del) ’
bQ 0
rB
a exp 3

Delbe
2
ae

−oDb

4b
4[1+O(eD)] (3.29)

Third, the part of the screened self-energy which exists even in the
absence of any electrostatic property of the wall (namely even when Del=0)
is (oD/2) L̄(oDx; oDb, Del); it arises from the ‘‘geometric’’ repulsion caused
by the mere presence of the wall. Indeed, by deforming the screening cloud
(with a net charge −ea) surrounding any charge ea, the wall hinders the
stabilizing effect of Coulomb interactions, as exhibited clearly in Section 5.3
about the plain hard wall.

3.6. Limiting Case of the OCP

The density profile for a one-component plasma (OCP) can be derived
from the expression obtained for a two-component plasma by the following
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trick already tested in refs. 2 and 4. In order to describe a OCP where
moving particles carry a positive charge e in a neutralizing uniform back-
ground with density r, we start from a two-component plasma with e+=e
and r+=r and we take the limit where e−/e+ vanishes while e−r−=
−e+r+ is kept fixed.

The general expression (3.20) tends to the limit

rOCP=rh(x−b) exp 5Delbe2e−2oDx

4x
6

×31−
1
2
boDe2[L̄(oDx; oDb, Del)−MOCP(oDx; boDe2/2, oDb, Del)]4

(3.30)

where oD=`4pbre2 , L̄ is defined by (3.9) and (3.11), while MOCP is equal
to the function Mc defined in (3.18) and (3.19) with ec replaced by oDbe2/2.
According to (3.17), the potential difference with the bulk is

FOCP(x)=− 1
2oDeMOCP(oDx; boDe2/2, oDb, Del) (3.31)

We recall that (3.30) can also be rewritten as

rOCP(x)=rh(x−b) e−be2Vsc
self (x)[1−beFOCP(x)] (3.32)

where V sc
self (x) is given in (1.9). Moreover, according to (3.12), (2.22) may

be rewritten in the case of the OCP as

1
2 F

+.

b̃
dx̃ Œ[e−be2Vsc

self (x̃ Œ)−1][e−|x̃− x̃ Œ|+e−(x̃+x̃ Œ−2b̃)]

=beFOCP(x; b̃)+Oexp(e
2
D) (3.33)

3.7. Comparison with Previous Results

The expression (3.30) for the OCP is valid at any distance from the
wall and for any value of Del and oDb. Let us see how it can be compared
with the expression (3.21) in ref. 1 obtained in the case Del < 0 and b=0,
and for distances x ± be2. (The expressions in ref. 1 will be denoted by a
superscript *.)

Alastuey starts from the BGY equation (2.1) and directly replaces the
Ursell function by its Debye approximation −be2oDf2

(0)(oD r, oD rŒ; Del).
The equation (3.17) in ref. 1—which is analogous to our equation
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(2.14)—involves the screened self-energy calculated at leading order in eD
—as in the present paper—and given by

V scg
self (x)=eDL(oDx; Del) (3.34)

However the equation (3.17) in ref. 1 is solved only for distances
x ± be2 which are large enough to allow one to replace U(r), defined in
our equation (2.17), by zero. The corresponding approximated Fg

OCP is
solution of

5 d2

dx2−o
2
D
6 Fg

OCP(x)=−
o2

D

be
e−be2Vscg

self (x) x ± be2 (3.35)

while, according to the Poisson equation which relates d2Fg
OCP/dx

2 and the
charge density e[r(x)−r],

rg
OCP(x)=r[e

−be2Vscg
self (x)−beFg

OCP(x)] x ± be2 (3.36)

((3.36)is the formula (3.21) given in ref. 1.) According to the result (2.18) of
our analysis of the non approximated equation (2.16) (see Paper II), the
expression of Fg

OCP, solution of (3.35) and given in Eq. (3.20) of ref. 1,
coincides with our formula (3.33) valid at any distance. On the other hand,
the result (3.36) does coincide with the x ± be2 limit of the expression
(3.32) which is valid for any x.

Our ability to handle with all distances relies on two progresses with
respect to the approach of ref. 1. First, we extract from the expression of
e2
aV

scg
self (x) the part which diverges as the bare self-energy Dele

2
a/(4x) when x

approaches the wall and which enforces the vanishing of the density at the
wall when b=0. Second, we are able to disentangle this short-range effect
from the long-range exponential screening through our systematic method
of expansion introduced in Paper II for the solutions of the inhomogeneous
Debye–Hückel equations at stake.

4. GENERIC GLOBAL PROPERTIES

4.1. Potential Drop

First we recall that in the generic case the local neutrality valid in the
bulk is destroyed near the wall,

C
a

eara(x) ] 0 (4.1)
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and there appears an electric layer which is responsible for a potential drop
F(x) between each point and the bulk. The expression of F(x) is given in
(3.17). M̄ in the decomposition of Mc is a positive function, whereas
Mc−M̄ may have any sign. Thus the profile of F depends on the compo-
sition {ec , rc}c=1,..., ns of the Coulomb fluid and on the value of Del. For
instance, when oDb ° 1,

F(x=0)=−
2pb
oD

C
c

rB
c e

3
c
3(1−D2

el) J(Del)

+
Del

2
5ln 13oDbe2

c |Del |/4)−1+2C+A 1Delbe
2
c

4b
26+O(eD ; oDb)4

(4.2)

In (4.2) O(eD ; oDb) denotes a term of order either eD or oDb, and

J(Del)=
1

4(1+Del+D
2
el)
3 − p
`3

+(1+2Del) ln 3

+
1−D2

el

Del
ln(1−Del)+

1−Del

`Del

ln 11+`Del

1−`Del

24 (4.3)

An example for the profile F(x) is drawn in Fig. 1.
However the local neutrality ;a eara(x)=0 holds in the specific case

of a charge-symmetric plasma in a symmetric state, for any strength of the

Fig. 1. Profile of the electrostatic potential F(x) for oDb=0.1 in the limit Delbe2/b ° 1.
Mc in (3.23) does no longer depend on c in the limit Delbe2/b ° 1. F0=−;c be

3
c r

B
c /oD. The

values of Ew are displayed in the figure.
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Coulomb coupling in the fluid. We use the following definitions. A charge-
symmetric fluid contains equal numbers of positively and negatively
charged species and the set of charges is invariant under inversion of
charges. In the special case of a two-component plasma made of charges
+e and −e, the latter charge symmetry combined with the neutrality rela-
tion (2.3) implies that rB

+=rB
− . On the contrary, for a charge-symmetric

plasma with at least four species rB
a ] r

B
−a in the generic case. However, in

some situations (for instance when two different salts made with mono-
valent ions are dissolved in water) the system is prepared in a symmetric
state; the bulk density parameters are chosen to satisfy

rB sym
a =rB sym

−a (4.4)

In such a symmetric state, the symmetry of the Hamiltonian under inver-
sion of charge signs enforces that at any point x

C
a

ear
sym
a (x)=0 (4.5)

and, subsequently

F sym(x)=0 (4.6)

In a symmetric state, a charge-symmetric Coulomb fluid does not build any
charge density profile or any electrostatic potential difference with the
bulk.

4.2. Global Charge

A dielectric wall remains globally neutral in the presence of a
Coulombic fluid and may only acquire macroscopic multipoles depending
on the geometry of the dielectric sample. As a consequence, we expect (10)

that, since Ew < +.,

F
+.

0
dx C

a

eara(x)=0 (4.7)

We recall that F(x=0) ] 0 means that the dielectric layer carries a non-
vanishing dipole though its net charge is zero.

The global charge of the system calculated at leading order eD indeed
vanishes in agreement with (4.7). The result is readily obtained by writing
for ra(x) the structure (2.13) combined with (2.22) and by using the
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following property. According to (3.15) and (3.16), if f(x) is an integrable
function which is bounded for every x \ 0,

F
+.

0
dx zMF

a (x) f(x)=rB
a F

+.

0
dx f(x)×[1+O(eD ln eD)] (4.8)

Eqs. (2.13) and (4.8) lead to

F
+.

0
dx C

a

eara(x)=F
+.

0
dx C

a

eaz
MF
a (x)

−b 1C
a

e2
ar

B
a
21F+.

0
dx F(x)2×[1+O(eD ln eD)]

(4.9)

F(x) is given at leading order eD by (2.22), and the property

F
+.

0
dx F dy oDf2 (0)(oDx, oDxŒ, oDy)=

4p
o2

D

(4.10)

implies that

F
+.

0
dx F(x)=

4p
o2

D

F
+.

0
dxŒ C

c

ecz
MF
c (xŒ) (4.11)

Combination of (4.9) and (4.11) implies that (4.7) is indeed satisfied at
leading order in eD.

4.3. Contact Theorem

Finally, we turn to the so-called contact theorem which gives the
difference between the bulk thermodynamical pressure PB and the kinetic
pressure on the wall kBT ;a ra(x=b). As shown for instance in ref. 3,

bPB=C
a

ra(x=b)−2pDelb 5F
+.

b
dx C

a

eara(x)6
2

−b F
+.

b
dx C

a

ra(x)
“[e2

aVself]
“x

(x)

−b F
+.

b
dx F

+.

b
dxŒ F dy

“[vw −vB]
“x

(x, xŒ, y)

×C
a, c

eaecra(x) rc(xŒ) hac(x, xŒ, y) (4.12)
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Since the global charge in the vicinity of a dielectric wall vanishes (see
(4.7)), the second term in the r.h.s. of (4.12) is equal to zero.

The contact theorem implies that compensations between the various
terms in the r.h.s. of (4.12) ensure that the bulk pressure is independent
from b as well as from Ew; in other words, the bulk pressure is independent
from the specific forms of the interactions between particles and the wall,
whether the latter interactions are purely geometric repulsions or coulombic
couplings.

The above compensations can be checked at first order in the coupling
parameter eD, as shown in Appendix. On one hand, up to order eD, the
bulk pressure PB is just the sum of the ideal-gas pressure plus the Debye
correction (5)

bPB=C
a

rB
a −
o3

D

24p
+O(re2D ln eD) (4.13)

where r is the order of magnitude of the rB
a ’s. On the other hand, we cal-

culate the r.h.s. of (4.12) by using the fact that the density profiles at first
order in eD obey the first BGY equation (2.1). In order to handle the con-
tributions from the screened self-energy in ra(x) properly, the integrals
are performed by using properties similar to (4.8) and derived from (3.15)
and (3.16). Finally, after compensations of terms involving the dielectric
response of the wall, the ideal-gas pressure arises and the remaining term is
reduced to the difference between the kinetic pressure at the contact with a
plain hard wall (Ew=1) and the ideal-gas pressure. The latter difference
involves only the explicit value of the screened self-energy at the contact
x=b with a plain hard wall. This value is independent from b and gives the
term of order eD in the bulk pressure (4.13).

5. CASE OF A PLAIN HARD WALL (eW=1)

5.1. Explicit Formulas

In this case the profile density is ruled only by the competition
between Coulomb interactions in the fluid and the geometric deformation
of screening clouds by the impenetrable wall. According to (3.17) and
(3.20), the expression of the density profile is reduced to

rHW
a (x)=rB

a
31−be2

a

oD

2
LHW(oD(x−b))−beaFHW(x)4 (5.1)
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In (5.1), LHW can be explicitly calculated from (3.9) with the result (see ref. 8)

LHW(u)=e−2u 5 1
2u

+
1
u2+

1
2u3
6−1

u
K2(2u) (5.2)

where K2 is a Bessel function. According to (3.19), MHW is reduced to
M̄HW(x). Thus MHW is independent from the species c and, according to
(3.17),

FHW(x)=−
2pb(;c r

B
c e

3
c)

oD
M̄HW(oD(x−b)) (5.3)

where M̄HW depends only on oD(x−b) since it is defined in terms of
L̄HW(oDx; oDb) through (3.18) and L̄HW(oDx; oDb)=LHW(oD(x−b))
according to (3.11). Its expression at u=oD(x−b) coincides with (3.24)
when Del is set to zero,

M̄HW(u)=F
+.

1
dt 5e

−2tu−2te−u

1−(2t)2
6 1

(t+`t2−1)2
(5.4)

The large-distance behaviour of (5.4) reads

M̄HW(u) ’
uQ.

1
2
5ln 3−2+

p

`3
6 e−u (5.5)

Since M̄HW is a positive function, FHW(x) has the same sign at all distances
from the wall. This sign is determined by ;c r

B
c e

3
c ,

1C
c

rB
c e

3
c
2 FHW(x) < 0 (5.6)

5.2. Electric Layers

Near a hard wall the charge density profile takes the simple form

C
a

ear
HW
a (x)=−b 1C

c

rB
c e

3
c
2 oD

2
[LHW(oD(x−b))−M̄HW(oD(x−b))]

(5.7)
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where −M̄HW is proportional to FHW according to (5.4). We have checked
that (5.7) agrees with the result (32) in ref. 6. Since LHW(0)=1/3 and
M̄HW(0)=[ln 3+1−p/`3]/8, LHW(0) > M̄HW(0), while LHW and M̄HW

are positive functions of x which decay respectively as exp(−2oDx)/x and
exp(−oDx) when x goes to infinity. Therefore the expression (5.7) implies
that the charge density profile is at least a double layer.

In a charge-symmetric plasma in a symmetric state, the local neutrality
(4.5) and the vanishing of F(x) (4.6), which are valid whatever the strength
of the coupling inside the plasma may be and for any value of the densities,
are retrieved at first order in eD from our expressions. Indeed, according to
(5.7) and (5.3), ;a eara(x) and FHW(x) are both proportional to ;c r

B
c e

3
c

and this combination vanishes in any charge-symmetric plasma in a sym-
metric state. In a plasma with an even or odd number of species, for a par-
ticular set of densities which satisfies the constraint

C
c

rB
c e

3
c=0 (5.8)

the properties (4.5) and (4.6) happens to be valid at first order in eD.
In a plasma which is not in a symmetric state, the charge density

profile does not vanish and the sign of the charge density at the wall is
fixed by the sign of ;c r

B
c e

3
c (in the considered weak-coupling regime),

1C
c

rB
c e

3
c
2 C
a

ear
HW
a (x=b) < 0 (5.9)

The inequality (5.9) implies that if the magnitudes of positive charges is far
larger than those of negative charges, then the layer at the contact with the
wall is negatively charged. Moreover, the combination of (5.6) and (5.9)
implies that

FHW(x=b) C
a

ear
HW
a (x=b) > 0 (5.10)

5.3. Repulsion from the Wall for the Total Particle Density

According to the bulk local neutrality (2.3),

C
a

rHW
a (x)=C

a

rB
a −
o3

D

8p
LHW(oD(x−b)) (5.11)
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Since LHW is a positive function, the total particle density is lower than its
bulk value at any point,

C
a

rHW
a (x) < C

a

rB
a (5.12)

The total particle density undergoes a repulsion at any distance.
The repulsion from the wall also operates for every particle density

when the electrostatic potential F(x) vanishes, namely in the case of a
charge-symmetric plasma in a symmetric state or in a plasma where the
composition happens to satisfy (5.8). Indeed, according to (5.1), at any
point

rHW
a (x) : C

c

r
B
c e

3
c=0 < rB

a (5.13)

The repulsion from the wall for every species when the potential drop with
the bulk vanishes is interpreted as follows. According to (2.9), whenF(x=b)
=0, the ratio rHW

a (x=b)/rB
a is only determined by the screened self-energy

which is the difference between the values of (e2
a/2)[f−vB](r, r) at the wall

and in the bulk. According to (5.1), this difference is equal to
(e2
a/2) oDL

HW(0), which is positive. Thus, when there is no potential drop
between the wall and the bulk, the immersion free-energy in the bulk is
lower than its value at the hard wall: the charge surrounded by its screen-
ing cloud with global charge of opposite sign is more stable in the bulk
than at the plain wall. In other words, for all species Coulomb screening is
less efficient when polarization clouds are deformed by the presence of the
hard wall. As an illustration, we consider a symmetric two-component
plasma made of charges e and −e. According to charge-symmetry r+(x)=
r−(x) and the profile density is drawn in Fig. 2a.

5.4. Particle Density Profiles

The case of plasmas in a charge symmetric state has been discussed
in the previous subsection. Here we consider the generic case where
;c r

B
c e

3
c ] 0. Then, already at leading order in eD, FHW(x) ] 0 and

;a eara(x) ] 0 so that the electrostatic potential created by the electric
layer interplays with the geometric repulsion from the wall.

If ;c r
B
c e

3
c > 0 then FHW(x) < 0 for all x according to (5.6). Thus for

all negatively charged species a− at any point, according to (5.1),

rHW
a− (x) < rB

a− (5.14)
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Fig. 2. Density profiles in a two-component plasma near a plain hard wall. If the plasma is
symmetric (Fig. 2a) FHW(x)=0 and only the geometric repulsion from the wall is involved.
The curve is the same as in ref. 9. If the plasma is charge asymmetric with e+=2 |e− | (Fig. 2b),
FHW(x=b) < 0=FHW(x=+.) and the competition between the geometric repulsion from
the wall and the attraction to the wall by FHW(x) for positive charges results into a double
layer structure for r+(x)−rB

+. In Figs. 2a and b oDbe2=0.01 and oDb=0.1.

because the geometric and electrostatic effects are both repulsive for them.
For positively charged particles, since L̄HW(x) decays faster than FHW(x),
the attractive effect of the potential drop overcomes the wall repulsion at
sufficiently large distances, and rHW

a+ (x)−rB
a becomes positive a priori at

least at some distance x0 before decaying to zero when x goes to .,

rHW
a+ (x)−rB

a+ \ 0 for x \ x0 (5.15)

The result of the competition between the two effects is given by the
density on the wall, which reads

rHW
a (x=b)=rB

a
31−

1
6
boD 5e2

a−ea
3
4
;c r

B
c e

3
c

;cŒ r
B
cŒe

2
cŒ

1 ln 3+1−
p

`3
264

(5.16)

The sign of rHW
a (x=b)−rB

a depends on the particular composition of the
plasma.

More precise results about the layer structure of rHW
a (x)−rB

a can be
obtained in two special cases. First, in a two-component plasma made of
charges e+ and e− , the local neutrality in the bulk (2.3) enforces that

rHW
+ (x)=rB

+
31−

boDe
2
+

2
5LHW(oD(x−b))−51+e−

e+
6MHW(oD(x−b))64

(5.17)
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The argument displayed after (5.7) shows that if e+ > |e− |, r
HW
+ (x) < rB

+ in
a strip b < x < x0 whereas rHW

+ (x) > rB
+ for all x > x0. As a conclusion, at

leading order in eD, the wall repulsion still overcomes the electrostatic
attraction arising from FHW for the positive charges near the wall and the
profile density rHW

+ (x)−rB
+ has the structure of a double layer. This can be

seen in Fig. 2b.
At last, we briefly discuss the case of a three-component plasma with

;c e
3
c r

B
c > 0 and which is made for instance of species e1 > 0, e2 > 0 and

e3 < 0. Then r3(x) < rB
3 according to (5.14). However, according to (5.16),

the composition {rB
c , ec}c=1, 2, 3 of the fluid may happen to be such that the

electrostatic attraction of positive charges (proportional to ea) overcomes
the geometric repulsion from the wall at x=b (proportional to e2

a) for the
species which carries the positive charge ei with the lowest magnitude, for
instance e2. Then r2(x=b) may happen to be larger than rB

2 in spite of the
wall geometric repulsion. If r2(x=b) > rB

2 , according to (5.9) and the
neutrality condition (2.3), r1(x=b) < rB

1 , and r1(x)−r
B
1 contains at least a

double layer.

6. GENERIC LOCAL PROPERTIES

6.1. Large-Distance Behaviours

As shown in Section 2 the density profile takes the form (1.8). The
total screened self-energy e2

aV
sc
self (x) is written in (3.6). Its decay at large

distances e2
a exp(−2oDx)/4x (given by (3.10)) is independent from Del and

is positive: far away from the wall, the screened self-energy is a repulsive
effect, even if the electrostatic response of the wall upon one charge is
attractive (Del > 0). The contribution from the complete screened self-
energy e2

aV
sc
self to ra(x)−r

B
a is drawn in Fig. 3.

The electrostatic potential decays only as exp(−oDx) at large distances
from the wall,

F(x) ’
xQ+.

Fas e−oDx (6.1)

The sign of Fas depends on the composition {ec , r
B
c }c=1, ..., ns as well as on

oDb and Del. Indeed

Fas=−
2pb
oD

C
c

e3
c r

B
c {M̄as(oDb, Del)+[Mc−M](x̃=0; ec , oDb, Del)}

(6.2)
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Fig. 3. Contribution from the complete screened self-energy e2
aVself to the profile density. In

the case of a symmetric two-component plasma of charges e and −e, r+(x)=r−(x)=r(x)
and F(x)=0 while r(x)=rB exp[−be2V sc

self (x)]. In Fig. 3a, where Ew < 1, both the electro-
static and geometric repulsions from the wall make r(x) < rB. Figure 3b, where Ew > 1,
displays the competition at short distances between the electrostatic attraction to the wall
(which gets larger when Ew increases) and the geometric repulsion from the wall. In Fig. 3a,
oDbe2=0.1 and oDb=10−5 whereas in Fig. 3b, oDbe2=0.01, oDb=0.1 and the values of Ew
are written in the figure.

where, in the limit g — oDb=0, M̄as is obtained from (3.24)

M̄as(g=0, Del)=
1
8

1−D2
el

1+Del+D
2
el

3 p
`3

+(1+2Del) ln 3+2
(1−D2

el)
Del

ln(1−Del)4

(6.3)

while [Mc−M](x̃=0; ec , g=0, Del) is calculated from (3.23).
In an asymmetric plasma or a charge-symmetric plasma with at least

four components and in an asymmetric state, as far as the density profile of
one species is concerned, the exp(−2oDx)/x tail of the screened self-energy
is always overcome by the effect of −eaF(x),

rasym
a (x) ’

xQ+.
rB
a [1−beaFase−oDx] (6.4)

On the contrary, in a symmetric two-component plasma or in a charge-
symmetric plasma with more than two components and in a symmetric
state (see definition (4.4)), F(x)=0 and

r sym
a (x) ’

xQ+.
rB
a
51−be2

a

e−2oDx

4x
6 (6.5)
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However, because of the bulk local neutrality, the influence of F(x) at
large distances disappears in the total particle density ;a ra(x) even in the
case of an asymmetric plasma

C
a

ra(x) ’
xQ+.

C
a

rB
a −
o2

D

16p
e−2oDx

x
+O 1e

−3oDx

x
2 (6.6)

The total particle density is submitted to an effective repulsion far away
from the wall. On the contrary, the charge density at large distances is
determined by F(x),

C
a

eara(x) ’
xQ+.

−
o2

D

4p
Fase−oDx (6.7)

When approaching the bulk region, the charge density vanishes with a sign
ruled by the composition of the Coulomb fluid.

6.2. Effect of the Wall Dielectric Response

The three effects which interplay in the density profiles when Ew ] 1
have been discussed in Sections 5.3 and 6.1. Here we consider an asymme-
tric two-component plasma with e+=−2e− and we comment briefly the
corresponding figures for the profiles of particle and charge densities.

First we turn to the density profiles. When Ew=1 the density at the
wall (x=b) differs from its bulk value only by a term of order
eD=oDbe2/2 (see Fig. 2b). When Ew < 1 the electrostatic repulsion from
the wall makes all density profiles at the wall (x=b) vanish exponentially
fast when b goes to zero (see Fig. 4a). When Ew > 1 the density at x=b
increases as Ew gets larger because of the electrostatic attraction to the wall
(see Fig. 4b). Subsequently, the difference r+(x)−rB

+, which has a double-
layer structure when Ew [ 1, exhibits a threefold-layer structure when Ew
becomes sufficiently large.

The charge density profile C(x)=e+r+(x)+e−r−(x) obeys the same
evolution when Ew varies. If Ew=1, according to (5.6), the condition
r+e3

++r−e
3
− > 0 implies that FHW(x=b) < 0 and enforces the double layer

ı À shown in Fig. 5 and discussed after (5.7). This double layer arises
from the balance between the electrostatic force associated with F(x) and
created by C(x) itself and the geometric repulsion from the wall due to the
deformation of screening clouds. When Ew < 1, the extra electrostatic
repulsion from the wall does not destroy the double layer and only enforces
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Fig. 4. Density profiles in an asymmetric two-component plasma (e+=2|e− |) when Ew
varies. In Fig. 4a, oDbe2=0.1 and oDb=10−5, whereas in Fig. 4b, oDbe2=0.01, oDb=0.1
and the values of Ew are given in the figure.

the vanishing of C(x) at x=0 when b=0 (see Fig. 6a). When Ew > 1, in the
case of positive charges, the electrostatic self-attraction to the wall com-
petes with the opposite effect of F(x) and for high enough values of Ew,
C(x) contains three layers À ı À (see Fig. 6b). When Ew becomes far
larger, the electrostatic self-attraction to the wall is so strong that the sign
of F(x) at large distances changes and again there appears a double layer
À ı but with signs reversed with respect to the situation when Ew=1 (see
Fig. 6c).

Fig. 5. Double layer of the charge density profile C(x)=e+r+(x)+e−r−(x) for the asym-
metric two-component plasma already considered in Fig. 2. ;c r

B
c e

3
c > 0 in this case and

inequality (5.9) can be checked.
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Fig. 6. Charge density profiles in the same two-component plasma as in Fig. 5. In Fig. 6a,
oDbe2=0.1 and oDb=10−5 and in Figs. 6b and c, oDbe2=oDb=0.1.

APPENDIX

In the present appendix we show that the contact theorem (4.12) is
satisfied by the profile densities found at first order in eD. First, we consider
a plain hard wall (Del=0) and then we turn to the case of a wall with a
dielectric response.

In the case of a plain hard wall, the r.h.s. side of (4.12) is reduced to
the kinetic pressure on the wall

bPB=C
a

ra |Del=0(x=b) (A.1)
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According to the bulk local neutrality (2.3) the contribution from F(b) to
;a ra |Del=0(x=b) is zero, and, according to (5.11),

C
a

ra |Del=0(x=b)=C
a

rB
a −b C

a

rB
a e

2
aV

sc
self |Del=0(x=b)+O(re2D ln eD)

(A.2)

Since V sc
self |Del=0(x=b)=−oD/6 (see Section 5), the kinetic pressure (A.2)

on the wall does coincide with the value (4.13) of the bulk pressure at first
order in eD.

Now we turn to the case of a wall with a dielectric response. First, the
last integral in the r.h.s. side of (4.12) can be written as the sum IW −IB

where

IW=F
+.

b
dx C

a

ra(x) JW, a(x) (A.3)

and JW, a(x) is the integral in the r.h.s. of the first BGY equation (2.1).
IB and JB, a(x) are defined in a similar way. The value JMF

W, a(x) of JW, a(x) in
the mean-field approximation is given in (2.7). By use of the definitions
(1.4) and (2.10), it can be rewritten as

JMF
W, a(x)=−be2

a

“

“x
[V sc

self (x)−Vself(x)] (A.4)

Therefore

IMF
W −b F

+.

b
dx C

a

ra(x)
“[e2

aVself]
“x

(x)

=−b F
+.

b
dx C

a

ra(x)
“[e2

aV
sc
self]

“x
(x) (A.5)

The r.h.s. of equality (A.5) does not involve the bare self-energy Vself(x) and
it is calculated by inserting the expression (1.8) of ra(x) in terms of the
screened self-energy and the electrostatic potential F(x). After an integra-
tion by parts, we notice that, according to (3.15) and (3.16),

F
+.

b
dx exp[−be2

aV
sc
self (x)]

“F(x)
“x

=5F+.

b
dx
“F(x)
“x
6×[1+O(eD ln eD)]

(A.6)
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Then the local neutrality in the bulk (2.3) implies that the sum (A.5) is
equal to

C
a

rB
a −C

a

ra(x=b)+O(re2D ln eD) (A.7)

Second, we calculate IB which is defined in terms of

JB, a — −bea F
+.

b
dxŒ F dy

“vB

“x
(x−xŒ, y) C

c

ecrc(xŒ) hac(x, xŒ, y) (A.8)

as in (A.3). In fact, the difference

hac(x, xŒ, y)−hac |Del=0(x, xŒ, y) (A.9)

gives a vanishing contribution to IB. Indeed, the mean-field value (2.5) of
hac is proportional to f (0) and, according to (3.2) and (3.4), f (0)−f (0)|Del=0 is
bounded by a product of functions f(x, xŒ)g(y) where g(y) is integrable
while f(x, xŒ) decays exponentially fast in all directions in the plane of
variables (x, xŒ). As a consequence

“vB

“x
(x−xŒ, y) C

a, c
e2
ae

2
c ra(x) rc(xŒ)[f

(0)(x, xŒ, y)−f (0)|Del=0(x, xŒ, y)]
(A.10)

is absolutely integrable in the space (x, xŒ, y). Moreover, f (0)−f (0)|Del=0 is
symmetric under exchange of x and xŒ whereas “vB/“x is antisymmetric
under the same exchange. Subsequently, the contribution from the differ-
ence (A.9) to IB is just zero. Moreover, when Del=0 the self-energy is
bounded for all x’s ranging from 0 to +. so that, according to (3.17),

ra(x)−ra |Del=0(x)=r
B
a {exp[−beaV

sc
self (x)]−1+Oexp(eD)} (A.11)

and, according to (3.15) and (3.16), ra(x)−ra |Del=0(x) contributes to IB by
a term of order re2D ln eD, as well as rc(xŒ)−rc |Del=0(xŒ). Eventually,

IB=IB |Del=0+O(re2D ln eD) (A.12)

Since the Ursell function hac |Del=0 obeys the BGY hierarchy with vw

replaced by vB, a calculation similar to that performed for IW leads to

IB |Del=0=C
a

rB
a −C

a

ra |Del=0(x=b)+O(re2D ln eD) (A.13)
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According to (A.2), the r.h.s. of (A.13) coincides with the opposite of the
term of order eD in the bulk pressure. Therefore (A.13) leads to

IB=
o3

D

24p
+O(re2D ln eD) (A.14)

Eventually, the sum of the terms in the r.h.s. of (4.12) does coincide with
the value (4.13) of bPB.
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